

This discussion paper is/has been under review for the journal Ocean Science (OS).
Please refer to the corresponding final paper in OS if available.

Extraction of spatial-temporal rules from mesoscale eddies in the South China Sea Based on rough set theory

Y. Du¹, X. Fan¹, Z. He², F. Su², C. Zhou¹, H. Mao², and D. Wang²

¹State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China

²Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China

Received: 29 March 2011 – Accepted: 9 May 2011 – Published: 14 June 2011

Correspondence to: Y. Du (duyy@lreis.ac.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.

OSD

8, 1261–1300, 2011

**Extraction of
spatial-temporal
rules from mesoscale
eddies**

Y. Du et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Abstract

In this paper, a rough set theory is introduced to represent spatial-temporal relationships and extract the corresponding rules from typical mesoscale-eddy states in the South China Sea (SCS). Three decision attributes are adopted in this study, which 5 make the approach flexible in retrieving spatial-temporal rules with different features. Spatial-temporal rules of typical states in the SCS are extracted as three decision attributes, which then are confirmed by the previous works. The results demonstrate that this approach is effective in extracting spatial-temporal rules from typical mesoscale-eddy states, and therefore provides a powerful approach to forecasts in the future. 10 Spatial-temporal rules in the SCS indicate that warm eddies following the rules are generally in the southeastern and central SCS around 2000 m isobaths in winter. Their intensity and vorticity are weaker than those of cold eddies. They usually move a shorter distance. By contrast, cold eddies are in 2000 m-deeper regions of the southwestern and northeastern SCS in spring and fall. Their intensity and vorticity are strong. Usually 15 they move a long distance. In winter, a few rules are followed by cold eddies in the northern tip of the basin and southwest of Taiwan Island rather than warm eddies, indicating cold eddies may be well-regulated in the region. Several warm-eddy rules are achieved west of Luzon Island, indicating warm eddies may be well-regulated in the region as well. Otherwise, warm and cold eddies are distributed not only in the 20 jet flow off southern Vietnam induced by intraseasonal wind stress in summer-fall, but also in the northern shallow water, which should be a focus of future study.

1 Introduction

The South China Sea ($2^{\circ}30' - 23^{\circ}30' \text{ N}$, $99^{\circ}10' - 121^{\circ}50' \text{ E}$) is the largest semi-enclosed 25 marginal sea in the northwestern Pacific Ocean, as shown in Fig. 1. It has a large NE-SW oriented abyssal basin with greatest depth 5567 m. There is an approximate $3.5 \times 10^6 \text{ km}^2$ of total area with mean depth of 1212 m. The SCS is well linked to the adjacent seas or oceans through several straits or channels, connecting to the Pacific Ocean through the Luzon Strait, to the Sulu Sea through the Mindoro Strait, to the East

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

China Sea through the Taiwan Strait and to the Java Sea through the Karimata Strait and so on.

Under the confluence of monsoon forcing, Kuroshio intrusion, and complex topography, the SCS is characterized as an area with strong mesoscale activity (He et al., 2002). Located beneath the East Asian Monsoon system, the SCS has prevailing strong northeast winds in winter (October–next March), and southwest winds in summer (June–August); as a result, the near-surface circulation has an evident feature of seasonal variability (Qu, 2000; Wyrtki, 1961; Xu et al., 1982; Su, 2005). Hence, mesoscale variability shows a seasonal variation of flow pattern. The generation of eddies, as is well known, has a close relationship with wind forcing; positive wind stress curl induces a cyclonic eddy, and negative wind stress curl induces an anticyclonic eddy in the ocean. Sea surface height (SSH) is a useful indicator of upper-layer ocean circulation, being well able to reflect mesoscale signals. Zhuang et al. (2010) conclude that the intraseasonal SSH variabilities are induced by distinct mechanisms on the shelves and in the deep waters of the SCS: barotropic response to intraseasonal wind stress forcing in shallow water, and barotropic and baroclinic instabilities and eddy energy advection in deep water, with an exception offshore from Vietnam in summer.

On the other hand, mesoscale variability also has an interannual variation as a response to El Nino/Southern Oscillation (ENSO) in the SCS. Xiu et al. (2010) reveal that mesoscale eddy activities do not account for the ENSO events directly, although interannual variabilities in SSH fields are highly correlated with ENSO (Xie et al., 2003; Liu et al., 2004; Wu and Chang, 2005; Fang et al., 2006; Wang et al., 2006). Previous works reveal that eddies are shed from strong currents such as the Gulf Stream and Kuroshio (Hurlburt and Thompson, 1980; Li et al., 1998; Hetland et al., 1999), and then generate prominent spatial-temporal variability in regional hydrography (Wu and Chiang, 2007). Observational results show that, in winter, there is an anticyclonic eddy shed from the Kuroshio loop due to an unstable Kuroshio meander in the northern Luzon Strait (Li and Wu, 1989; Jia and Liu, 2004); the eddy subsequently moves westward into the SCS (Li et al., 1998; Wang et al., 2000; Yuan et al., 2006). Direct

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

views of eddy-shedding events can be provided by satellite remote sensing data (Yuan et al., 2007; Li et al., 2002; Su et al., 2002). Numerical studies also support this notion (Yang et al., 2000; Metzger and Hurlburt, 2001) and discuss eddy-shedding mechanisms (Jia et al., 2005). The previous studies reveal that mesoscale eddies propagate 5 westward with a speed of 0.1m/s, the order of magnitude of the phase speed of baroclinic Rossby waves in the SCS (e.g., Wu et al., 2005; Wu and Chiang, 2007; Hwang et al., 2004; Roemmich and Gilson, 2001; Hu et al., 2001; White, 2000; Wang et al., 2008a). Topographic eddy can be induced by an eddy-shedding process resulting from 10 the interaction between unstable rotating fluid and sharp topography in the SCS (Yuan and Wang, 1986; Hu et al., 2001).

Discovery of mesoscale eddies is one of the major breakthroughs in the study of physical oceanography in recent decades, and significantly enhances the understanding 15 of hydrodynamics. Oceanographers pay close attention to the origin, movement and spatial-temporal evolution of local eddies at a specific moment for lack of long enough time series of data gathered by using hydrographic observation, numerical modeling, remote sensor, and so on. However, there are obvious drawbacks in each 20 approach or technique. Cruise observation is so hard and so expensive, as is well known, that only sparse data can be achieved. Numerical modeling depends on specific boundary conditions heavily, and also intensive computation. Remote sensing is good at extracting instantaneous status rather than continuous process of mesoscale 25 eddies. So it is necessary to introduce a new approach to extract spatial-temporal rules from eddies efficiently, in order to depict their distribution pattern in-depth and quantitatively.

Rough set theory is an approach to extract and represent the knowledge that can be 25 derived from incomplete datasets with uncertainties (Miao and Li, 2008). Since rough set theory is available to analyze data with insufficient and incomplete knowledge, it has been applied in many traditional domains, including finance, medicine, telecommunications, vibration analysis, control theory, signal analysis, pattern recognition, and image analysis (Yasdi, 1996; Polkowski and Skowron, 1998; Polkowski et al., 2000; Skowron,

Extraction of
spatial-temporal
rules from mesoscale
eddies

Y. Du et al.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

2001; Leung and Li, 2003). In the present study, rough set theory is introduced to examine spatial-temporal relationships and subsequently extract spatial-temporal rules from mesoscale eddies during November 2003–June 2009 in the SCS. The purpose of this paper is to examine whether the approach is available to extract spatial-temporal rules of mesoscale eddies. In Sect. 2, we present the rough set theory and spatial-temporal relationships representation. Data sources and the spatial-temporal rules of mesoscale eddies in the SCS are described in Sect. 3. The findings are discussed in Sect. 4, followed by a conclusion in Sect. 5.

2 Methods

10 2.1 Rough set theory

Rough set is a mathematical approach proposed by Pawlak (1982) to extract decision rules from a decision system, which is a special case of an information system. Formally, it can be represented by the form $S = (U, C \cup D)$, where U is a nonempty finite set of objects called the universe, C is a nonempty finite set of attributes and $D \not\subseteq C$ is the decision attribute. The elements of C are conditional attributes or simply conditions. The decision attributes may take several values, though binary outcomes are rather frequent (Komorowski et al., 1999). In this study, the universe U may be the whole set of mesoscale-eddy cases in the SCS, and the decision attribute D can be the place of origin, generating season or the type of mesoscale eddies. For example, we can 15 associate the number 1 with a warm eddy, 0 with a cold eddy. Conditional attributes in C are the factors associated with spatial-temporal characteristics of mesoscale eddies, such as intensity, the place of origin, horizontal scale and relationships between 20 a target eddy and its reference eddy¹.

¹Reference eddy is defined as the nearest eddy to target eddy at a specific time. A circular area centered at the target eddy and with a radius of 60 nm was screened to identify the eddy temporally occurring before and spatially closest to the target eddy. This specific eddy is deemed as the reference eddy.

2.1.1 Attribute reducts

Rough set analysis aims at synthesizing an approximation of concepts from acquired data (Bai et al., 2010). There are some concepts that cannot be fully defined in a crisp manner by attributes at hand, e.g., mesoscale ocean eddies cannot be classified by their hydrographic features. Rough sets use upper and lower approximations to describe the uncertain concept.

In rough set theory, attribute reducts is a key step. The basic idea is to retain only the attributes that preserve the indiscernibility relation and the set approximation consequently. The rejected attributes are redundant because their removal cannot worsen the classification. There are usually several such subsets of attributes, and those that are minimal are called reducts (Komorowski et al., 1999).

The decision table is then simplified using the algorithm proposed by Pawlak (1991), which is briefly summarized as follows. The positive region of D with respect to C , $\text{POS}_C(D)$ is given by

$$15 \quad \text{POS}_C(D) = \bigcup_{X \in U/D} \underline{C}X \quad (1)$$

where $\text{POS}_C(D)$ is a collection of all elements in U , which can be uniquely categorized into an equivalence class of D by the partition of a conditional attribute C in the U . X is a subset of U ($X \subseteq U$) and U/D represents an equivalence class of the decision attributes. $\underline{C}X$ refers to the lower approximation of X with respect to C .

20 For an index c in set C ($\forall c \in C$), if

$$\text{POS}_C(D) = \text{POS}_{C-\{c\}}(D) \quad (2)$$

then c is dispensable in C with respect to D . If indices in C are all indispensable with respect to D , then C is totally independent with respect to D . Attribute reducts is a process to find a subset of C , which is totally indispensable with respect to D .

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

2.1.2 Decision rule extraction

Once the reducts are found, the rules are easily constructed by overlaying the reducts over the originating decision table and reading off the values. Let X_i and Y_j be the equivalence classes of U/C and U/D , respectively. $\text{des}(X_i)$ represents the description of equivalence class X_i , that is, the specific values of the conditional attributes in set C . $\text{des}(Y_j)$ refers to the description of equivalence class Y_j , that is, the specific values of decision attributes in D . Decision rules then can be generated and expressed as

5 $r_{ij} : \text{des}(X_i) \rightarrow \text{des}(Y_j) \quad Y_j \cap X_i \neq \emptyset$ (3)

Both the certainty and coverage factors for each specific rule are calculated to determine whether the rule is essential or not (Pawlak, 2001). The certainty factor measures how likely the result (derived from a specific rule) is correct and can be given by

10 $\alpha = |X_i \cap Y_j| / |X_i| \quad 0 < \alpha < 1$ (4)

A high value of α for a specific rule indicates that, if the condition attributes satisfy the rules, the decision results are more likely to be correct.

15 The coverage factor is defined as

$$\beta = |X_i \cap Y_j| / |Y_j| \quad 0 < \beta < 1 \quad (5)$$

which represents, to some extent, the conditional attributes satisfying the rules for a specific result. The value 1 indicates that, for any result, the condition attributes completely satisfy the rules. The lower the value, the lower probability the attributes may observe the rules. The certainty and coverage factors are then calculated for all rules which were generated from the reducts of set C . Only those rules (thereby the corresponding spatial relations) with certainty and coverage factors greater than a preset threshold are accepted.

20 In the above, it is assumed that the values of attributes are discretised data. If the attribute values are continuous, they should be discretised before hand. Over the years,

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

many discretization algorithms have been proposed and tested to show that discretization has the potential to reduce the amount of data while retaining or even improving predictive accuracy. Current dominant discretization approaches generally fall into 2 categories: non-supervised and supervised. Non-supervised approaches mainly employ equal-frequency and equal-interval algorithms. Supervised approaches mainly employ 1RD, Entropy (MDLP – the minimum description length principle), Naive and Semi-Naive algorithms (Fayyad and Irani, 1992, 1993), which take decision-making information into consideration and have a better discretization effect.

5

2.2 Application of rough set theory to mesoscale ocean eddies

10 Considering rough set theory does not need prior information in analyzing data, it can derive a classification or decision rules according to the knowledge reducts procedure. Hence, rough set theory can mine the objective and inherent rules implicit in the data. Given that the dynamic mechanisms of mesoscale eddies are still not grasped completely, our study adapts rough set theory to extract spatial distribution regularities of 15 ocean eddies from high-resolved ocean modeling data in quantity.

The whole process to extract spatial-temporal rules from mesoscale eddies by using rough sets can be divided into three steps (Fig. 2): (1) construct a decision information system based on the data at hand; (2) find minimal reducts of conditional attributes; (3) generate rules according to the reducts.

20 In the first step, spatial-temporal relationship indices should be transformed from original data, which are then imported into the decision table. This step is crucial when rough set theory is used in spatial analysis of eddies. Many spatial attributes are continuous variables. Under such circumstances, the continuous attributes should be discretized before performing rough set analysis. In our study, a boolean algorithm 25 was chosen to discretize the continuous attributes. It is used to discretise the decision table and a genetic algorithm is then applied to simplify and extract decision rules from mesoscale eddies. In rough set theory, a Boolean reasoning technique is typically applied to solve minimization problems (Skowron, 1995; Skowron and Rauszer, 1991).

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

**Extraction of
spatial-temporal
rules from mesoscale
eddies**

Y. Du et al.

Discernibility considerations together with Boolean reasoning could compute minimal, identifying patterns of various kinds. Approaches for discretization based on discernibility are intuitively appealing if used together with discernibility-based data mining approaches (Qhrn, 1999). Nguyen and Skowron (1995) propose such an algorithm—the Boolean reasoning algorithm. In the next step, as is described in Sect. 2.1, finding reducts is used as the attribute selection method. Not all attributes transformed or collected in the first step are the key factors that are related to the decision attribute. So it is important to select attributes that are in close relation to the decision. Finally, spatial-temporal relationship rules of eddies in the SCS are generated from the two reducts by overlaying the reducts over the originating decision table and reading off the values. The certainty and coverage factors of each specific rule are then calculated (Wang, 2001).

We present the detailed procedures to represent spatial-temporal relationships of mesoscale eddies, in view of the importance of the first step. As illustrated in Fig. 3, the procedures as follows:

1. Identify and select spatial-temporal relationships among eddies based on prior knowledge. For example, the distance between the target eddy and the nearest one which is generated most recently or distance between the target eddy and the mainland coastline that can be selected as a specific relationship for investigation.
2. These relationships are then described by a series of quantitative indices. For example, the RCC-8 model (Randell et al., 1992; Randell and Cohn, 1989) can be used to describe the topological relationship among eddies.
3. Decision tables are constructed with each row representing a case of an eddy, while columns record condition and decision attributes. The values in each row, except for the decision attributes, are the quantitative indices which are derived from spatial-temporal relationships.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

According to the previous studies, two types of attributes of eddies are considered in this paper. One is their own characteristic attributes. Another is features of spatial-temporal relationships, including:

5 1. Place of origin (Zone). According to generating mechanisms of mesoscale eddies, the SCS is divided into 4 zones: northeastern, central, southeastern, and southwestern zones (Wang, 2004), as shown in Fig. 1.

10 2. Generating season (Time). Spring is from March to May, summer from June to August, fall from September to November, and winter from December to next February.

3. Type of eddy (Type): warm or cold eddy.

4. Intensity of eddy M (Intensity): SSH difference in metres between the center and the periphery of an eddy.

5. Vorticity (Vorticity) with an approximation of the relative vorticity of a eddy:

$$\zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \approx \frac{8gM}{fD^2} \quad (6)$$

15 where ζ is eddy's vorticity in s^{-1} , M eddy's intensity, D eddy's diameter. The Coriolis parameter f is 10^{-4} s^{-1} , and the acceleration of gravity g is 9.80 m s^{-2} .

20 1. Horizontal scale of the eddy (HorizontalScale) in metres: the average of the major axis and the minor axis of an enclosing ellipse.

2. Temperature at the center of an eddy (CentralTemp) in Celsius degree.

3. Difference of temperature between the center and the periphery of an eddy (TempDiff) in Celsius degree.

4. Mean depth (Depth) in metres: the average water depth at the center of an eddy.

Discussion Paper | Discussion Paper | Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#) [Introduction](#)

[Conclusions](#) [References](#)

[Tables](#) [Figures](#)

◀

▶

◀

▶

[Back](#) [Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

5. The Euclidean distance (Distance) in metres from the geometric center of a target eddy to its reference eddy.
6. Directional relationship (Direction) to the reference eddy. In all eight directions are considered, involving north (N), northeast (NE), east (E), southeast (SE), south (S), southwest (SW), west (W) and northwest (NW).
7. Topological relationship (Topology) to the reference eddy, which can be represented by the RCC-8 Model (Randell et al., 1992; Randell and Cohn, 1989) as disjoint or overlapping.

3 Results

10 3.1 Data

Raw data can be acquired from output of the US Naval Research Laboratory (NRL, http://www7320.nrlssc.navy.mil/global_nlom32/scs.html) NLOM (the NRL Layered Global Ocean Model), including SSH, SST and surface current speed. The SSH data is assimilated from satellite data acquired by ENVISAT, GFO and JASON-1, etc.

15 The SST data is assimilated from IR data with a temporal resolution of 1 day and a horizontal spatial resolution of $(1/32)^\circ \times (1/32)^\circ$. The SCS is divided as 4 zones ($Z_1 - Z_4$, shown in Fig. 1), according to generating mechanisms of mesoscale eddies (Wang, 2004). We identify eddies in the SCS and track their evolution process from 5-year-and-8-month time series of SSH data during November 2003–June 2009 in accordance with the following four criteria:

- 20 1. There exist closed SSH contours (Wang et al., 2003; Lin et al., 2007).
2. The horizontal scale is not less than 100 km (Wang et al., 2003; Lin et al., 2007).
3. The eddy can be tracked over 20 days.
4. The SSH difference between center of an eddy and its outmost contour, intensity of an eddy M , is not less than 8 cm (Lin et al., 2007).

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

3.2 Selection of attribute

According to the methodology introduced in Sect. 2, spatial-temporal relationships among mesoscale eddies in the SCS are quantitatively described by the twelve attributes specified in Sect. 2.2. These attributes are first discretised (if continuous) and then imported as condition attributes into a decision table. Decision attributes in each table are selected depending on the specific concerns. So minimal attribute reducts are distinct according to decision attributes. As a result, rules of each issue extracted by rough set theory may be different. The place of origin of each eddy is selected as the decision attribute in Table 2, in order to extract certain rules from spatial-temporal relationships among eddies generated in all 4 zones of the SCS. Generating season is selected as the decision attribute in Table 3 for pursuing the seasonal variation of the rules. And the type of eddies (warm/cold eddy) is selected as the decision attribute in Table 4 when spatial-temporal rules between the two types of eddies are focused on.

In this study the quantitative indices of the twelve attributes depicting 391 typical states of all 76 mesoscale eddies are calculated by a Visual Basic Application (VBA) program running on the ArcGIS platform. The first three indices are used as a decision attribute, the others as condition attributes in decision tables. After constructing the decision table, the Rosetta software (Qhrn, 1999), which is jointly developed by the Department of Computer and Information Science at Norwegian University of Science and Technology and Institute of Mathematics at University of Warsaw in Poland, is used to calculate and extract rules.

3.3 Extraction of spatial-temporal rules of mesoscale eddies in the SCS

Tables 5–7 show the corresponding spatial-temporal rules extracted from three decision tables (Tables 2–4) in which the decision-making attributes are place of origin, generating season and eddy type, respectively. All the rules have a coverage level of 10 % at least and a certainty level of 100 %, and are arrayed in descending order by the value of coverage level. In all 5 kinds of rules are extracted in Table 5, 11 rules in Table 6, and 13 rules in Table 7, respectively.

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

The typical eddy-states following all rules in Table 5 are detected and presented in Fig. 6. In all 5 rules are extracted, including 2 rules in zone Z_1 of the SCS, 2 in zone Z_3 , and 1 in zone Z_4 , respectively. Cold-eddy states following Rule 1 are distributed southwest of Taiwan Island around 2000 m isobaths (zone Z_1). It is obvious that most of the states follow not only Rule 1, but also Rule 2 in this zone, except for two states following Rule 1 merely. In winter, wind stress curl of orographic wind induced by the cordillera on Taiwan Island results in cold water in the subsurface upwelling and creating a cold core eddy due to the Ekman pumping effect (Qu, 2000). In Z_3 zone all the states are in the 4000 m-deeper region of the basin, and follow both Rules 3 and 4 except one state only following Rule 4. There is a warm eddy southwest of Luzon Island besides the famous Luzon Cold Eddy, which is located northwest of Luzon Island. Wang et al. (2008b) reveal that the winter gap winds in the mountainous island chain along the eastern boundary of the SCS are intrinsic regional features of the monsoon due to orographic effects, spinning up cold and warm eddies west of Luzon Island. So, in summer, the eddy pair offshore from Vietnam separated by a wind jet has the same features in horizontal scale and the water depth of eddy core. Figure 6 shows that no rule is extracted in zone Z_2 .

Spatial-temporal rules extracted from typical mesoscale eddy states occurring in 4 seasons are presented in Table 6. A total of 8 rules are extracted in winter, 2 in summer, 1 in fall and none in spring, respectively. Spatial distribution of the states following all 11 rules is shown in Fig. 7a in winter, 7b in summer and 7c in fall. No eddy state is extracted in spring. As Fig. 7a presents, all the states, in winter, are concentrated around the western 2000 m isobaths of the northern basin (both zones Z_1 and Z_2) with an exception of one state in the basin center (zone Z_3). There are many more states of eddies in winter than the other seasons.

In Fig. 7a, two states obey Rules 1 and 2 together in zone Z_2 . Another two obey Rules 2 and 3 together in zone Z_2 . These four states locate in the eastern Xisha Island, maybe originating from the Xisha Warm Eddy AE1 in Wang et al. (2008a). Two states obey Rules 6 and 7 together: one lies in zone Z_1 , another in zone Z_2 . Furthermore,

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

2010). There is no warm-eddy state in the northern tip of 2000 m isobaths (southwest of Taiwan Island or west of Luzon Strait), as is clear in Fig. 8a, maybe due to lack of negative wind stress curl.

There is a phenomenon that some typical mesoscale-eddy states follow two rules or 5 more in Figs. 6–8, respectively, indicating they have much stronger regularity in spatial-temporal distribution. From the above analysis, we find that, typical cold-eddy states, located southwest of Taiwan Island, the northeastern tip of the basin, occurred in winter (Fig. 6). Typical warm-eddy states are distributed either southwest of Luzon Island, the deepest region of the basin, or the western edge of 2000m isobaths. It is shown in 10 Table 6 that no rule can be co-followed by the two types of eddies.

4 Discussion

Lots of previous works on mesoscale eddies in the SCS have been performed by in situ measurements, numerical simulation and satellite remote sensing. Some of their conclusions can be reproduced in our study, as in the following examples:

1. Through analyzing 5-yr T/P data, Wang et al. (2000) point out that mesoscale eddies in the SCS are active along the western 2000 m isobaths and the NE-SW oriented band from south of Luzon Strait to 11° N around the eastern Vietnam Peninsula. This is also revealed by Lin et al. (2007) through statistical analysis of 10-yr T/P data and Wang (2004) through statistical analysis of 8-yr T/P data. In 15 our study this spatial feature of eddies is confirmed one more time, as shown in Fig. 8b. In this Figure, warm-eddy states are located in the NW-SE oriented band, which confirms the conclusion in Lin et al. (2007) that there are warm eddies in 20 the region (14°–15° N, 118°–120° E) exclusively, but no cold eddy occurs.
2. Cheng et al. (2005) conclude that warm eddies are distributed north of 18° N, which is followed by Rule 1, 2, 5 and 7 in Table 5 and Rule 11 in Table 6. In 25 Fig. 8b, these states are in the western zone Z_2 (18°–20° N).

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#) [Introduction](#)

[Conclusions](#) [References](#)

[Tables](#) [Figures](#)

◀

▶

◀

▶

[Back](#) [Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

3. Most mesoscale eddies appear off the eastern Vietnam Peninsula, the western Luzon Strait and in the northeastern SCS, while they are inactive in the southeastern SCS (e.g. Wang, 2004; Lin et al., 2007; Cheng et al., 2005). This is confirmed in Fig. 6.

5 4. Wang et al. (2008a) examine warm eddies AE1 and AE2 in the northeastern SCS during the winter of 2003–2004. We can confirm that the six states of eddy AE1 in Figs. 2 and 4 of Wang et al. (2008a) follow Rules 1 and 3 together in Table 5 and Rules 4 and 11 together in Table 6, while none of rules is followed by states of eddy AE2. AE2 locates in zone Z_1 , as shown in Fig. 6. No rule can be extracted among warm-eddy states in this zone in winter other than Rule 1 of Table 6. It should be pointed out that we are not able to obtain the Euclidean distance, directional relationship and topological relationship of the two eddies. Thus only 10 some of rules in Tables 4–6 could be confirmed by Wang et al. (2008a).

15 However, there are several features achieved in our study that were not presented in previous works. In winter, warm eddies, as is well known, are generated in the northeastern SCS resulting from the frequent Kuroshio intrusion, thus most oceanographers pay close attention to their generating mechanisms, processes of evolution, and so on. Whereas, a few rules extracted in this zone are followed by cold eddies in winter, indicating cold eddies may be well-regulated in the region. Meanwhile, west 20 of Luzon Island, the famous Luzon cold eddy is focused. Several rules, however, are achieved for warm eddies in this zone, indicating warm eddies may be well-regulated in the region as well. Otherwise, warm eddies are distributed not only on the jet flow off southern Vietnam induced by intraseasonal wind stress in summer-fall, but also on the northern shallow water, which should be a focus of future study. Similarly, cold eddies 25 are also located at both northern and southern sides of the Vietnam jet flow in fall. And there are cold eddies generated off southern Vietnam in spring. These are interesting, and will be paid attention.

5 Conclusions

In this paper, a rough set theory is introduced to represent spatial-temporal relationships and extract the corresponding rules from typical mesoscale-eddy states in the SCS. These rules clearly confirm spatial-temporal distribution patterns and features of these states. Three decision attributes are adopted in this study, which make the approach flexible in retrieving spatial-temporal rules with different features. The results demonstrate that this approach is effective in extracting spatial-temporal rules from typical mesoscale-eddy states. Spatial-temporal rules in the SCS indicate that warm eddies following the rules are generally in the southeastern and central SCS around 2000 m isobaths in winter. Their intensity and vorticity are weaker than those of cold eddies. They usually move a shorter distance. By contrast, cold eddies are in 2000 m-deeper regions of the southwestern and northeastern SCS in spring and fall. Their intensity and vorticity are strong. Usually they move a long distance. In winter, a few rules are followed by cold eddies in the northern tip of the basin and southwest of Taiwan Island rather than warm eddies, indicating cold eddies may be well-regulated in the region. Several warm-eddy rules are achieved west of Luzon Island, indicating warm eddies may be well-regulated in the region as well. Otherwise, warm and cold eddies are distributed not only in the jet flow off southern Vietnam induced by intraseasonal wind stress in summer-fall, but also in the northern shallow water, which should be a focus of future study.

However, the approach requires to select the corresponding spatial-temporal relationships among mesoscale eddies according to each issue. It is also worth noting that the raw data used in this study is derived from numerical modeling. Some of eddies with a shorter life-time or smaller horizontal scale may not be included, as a result of not being identified. So the number of eddies analyzed is fewer than the actual total. In the future, the rough set approach will be improved by supplementing data acquired in different sea areas and seasons into the database, selecting appropriate attribute factors that can better reflect spatial-temporal relationships among eddies, and applying

OSD

8, 1261–1300, 2011

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

other discretization and reducts algorithms based on rough set theory. Comparison of the results derived from different scenarios would help yield more practically significant rules.

Acknowledgements. This work was fully supported by the National Science Fund (Project

5 No. 41071250), and the National 863 High Technology Programs of China (Project No. 2011BAH23B04), and was granted from the State Key Laboratory of Resource and Environment Information System (Project No. 08R8B500KA). The authors would appreciate comments from reviewers and readers.

References

10 Bai, H., Ge, Y., Wang, J., and Liao, Y.: Using rough set theory to identify villages affected by birth defects: the example of Heshun, Shanxi, China, *Int. J. Geogr. Inf. Sci.*, 24(4), 559–576, 2010.

Cheng, X., Qi, Y., and Wang, W.: Seasonal and Interannual Variabilities of Mesoscale Eddies in South China Sea, *J. Trop. Oceanogr.*, 24(4), 51–59, 2005.

15 Fang, G., Chen, H., Wei, Z., Wang, Y., Wang, X., and Li, C.: Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade, *J. Geophys. Res.*, 111, C11S16, doi:10.1029/2005JC003276, 2006.

Fayyad, U. M. and Irani, K. B.: On the handling of continuous-valued attributes in decision tree generation, *Mach. Learn.*, 8(1), 87–102, 1992.

20 Fayyad, U. M. and Irani, K. B.: Multi-interval discretization of continuous-valued attributes for classification learning. *Proceedings of the 13th International Joint Conference on Artificial Intelligence IJCAI-93*. Chambery, France: Morgan Kauffman, 1993.

He, Z., Wang, D., and Hu, J.: Features of eddy kinetic energy and variations of upper circulation in the South China Sea. *Acta Oceanol. Sinica*, 21(2), 305–314, 2002 (in Chinese with English abstract).

25 Hetland, R. H., Hsueh, Y., Leben, R. R., and Niiler, P. P.: A loop current-induced jet along the edge of the West Florida shelf, *Geophys. Res. Lett.*, 26(15), 2239–2242, 1999.

Hu, J., Kawamura, H., Hong H., Kobashi, F., and Wang, D.: 3–6 months variation of sea surface height in the South China Sea and its adjacent ocean, *J. Oceanogr.*, 57, 69–78, 2001.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#) [Introduction](#)

[Conclusions](#) [References](#)

[Tables](#) [Figures](#)

[◀](#) [▶](#)

[◀](#) [▶](#)

[Back](#) [Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Hurlburt, H. E. and Thompson, J. D.: A numerical study of loop current intrusions and eddy shedding, *J. Phys. Oceanogr.*, 10, 1611–1651, 1980.

Hwang, C., Wu, C. R., and Kao, R.: TOPEX/Poseidon observations of mesoscale eddies over the Subtropical Counter Current: kinematic characteristics of an anticyclonic eddy and a cyclonic eddy, *J. Geophys. Res.*, 109, C08013, doi:10.1029/2003JC002026, 2004.

Jia, Y. and Liu, Q.: Eddy shedding from the Kuroshio bend at Luzon Strait, *J. Oceanogr.*, 60(6), 1063–1069, 2004.

Jia, Y., Liu, Q., and Liu, W.: Primary studies of the mechanism of eddy shedding from the Kuroshio bend in Luzon Strait, *J. Oceanogr.*, 61(6), 1017–1027, 2005.

Komorowski, J., Pawlak, Z., Polkowski, L., and Skowron, A.: Rough sets: A tutorial. Rough fuzzy hybridization: a new trend in decision-making, edited by: Pal, S. and Skowron, A., Singapore: Springer-Vela 3-93, 1999.

Kuo, N. J., Zheng, Q., and Ho, C. R.: Satellite observation of upwelling along the western coast of the South China Sea, *Remote Sens. Environ.*, 74, 463–470, 2000.

Leung, Y. and Li, D.: Maximal consistent block technique for rule acquisition in incomplete information systems, *Inf. Sci.*, 153(1), 85–106, 2003.

Li, L.: A review on mesoscale oceanographical phenomena in the South China Sea, *J. Oceanogr. Taiwan*, 21(2), 562, 265–274, 2002 (in Chinese with English abstract).

Li, L. and Wu, B.: A Kuroshio loop in South China Sea?, *J. Oceanogr. Taiwan*, 8, 89–95, 1989 (in Chinese with English abstract).

Li, L., Nowlin Jr., W. D., and Su, J.: Anticyclonic rings from the Kuroshio in the South China Sea, *Deep-Sea Res. I*, 45, 1469–1482, 1998.

Lin, P., Wang, F., Chen, Y., and Tang, X.: Temporal and spatial variation characteristics on eddies in the South China Sea I. Statistical analyses, *Acta Oceanol. Sinica*, 29(3), 14–22, 2007.

Liu, Q., Jiang, X., Xie, S., and Liu, W.: A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability, *J. Geophys. Res.*, 109, C07012, doi:10.1029/2003JC002179, 2004.

Metzger, E. J. and Hurlburt, H. E.: The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea, *J. Phys. Oceanogr.*, 31, 1712–1732, 2001.

Miao, D. and Li, D.: Rough Sets Theory Algorithms and Applications, TsingHua University Press, Beijing, 2008.

Nguyen, H. S. and Skowron, A.: Quantization of real-valued attributes. Proceeding 2nd Inter-

national Joint Conference on Information Sciences, Wrightsville Beach, NC, 34–37, 1995.

Pawlak, Z.: Rough sets, *Int. J. Inform. Comput. Sci.*, 11(5), 341–356, 1982.

Pawlak, Z.: *Rough Sets: Theoretical Aspects of Reasoning about Data*, Kluwer Academic Publishers, Boston, 1991.

5 Pawlak, Z.: Bayes' theorem revised- the rough set view, *Proceedings of International Workshop on Rough Set Theory and Granular Computing (RSTGC 2001)*, Matshue, Shimane, Japan, 1–8, 2001.

Polkowski, L. and Skowron, A.: *Rough Sets in Knowledge Discovery 1: Methodology and Applications, 2: Applications*, Physica-Verlag, Heidelberg.

10 Polkowski, L., Tsumoto, S. and Lin, T.: *Rough Set Methods and Applications*, Physica-Verlag, Heidelberg, 49–88, 2000.

Qhrn, A.: Discernibility and rough sets in medicine: tools and application. Norwegian University of Science and Technology, Norway, 41–51, 1999.

Qu, T.: Upper-layer circulation in the South China Sea, *J. Phys. Oceanogr.*, 30, 1450–1460, 2000.

15 Randell, D. A. and Cohn, A. G.: Modelling topological and metrical properties in physical processes, *Proceedings of the 1st International Conference on the Principles of Knowledge Representation and Reasoning*, Morgan Kaufmann Publishers, San Francisco, 55–66, 1989.

Randell, D. A., Cui, Z., and Cohn, A. G.: A spatial logic based on regions and connection. 20 *Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning*. Morgan Kaufmann Publishers, San Francisco, 165–176, 1992.

Roemmich, D. and Gilson, J.: Eddy transport of heat and thermocline waters in the North Pacific: a key to interannual/decadal climate variability, *J. Phys. Oceanogr.*, 31, 675–687, 2001.

25 Skowron, A.: Synthesis of adaptive decision systems from experimental data, *Proceedings of the Fifth Scandinavian Conference on Artificial Intelligence*, number 28 in *Frontiers in Artificial Intelligence and Applications*, edited by: Aamodt, A., and Komorowski, J., IOS Press, 220–238, 1995.

Skowron, A.: Rough sets and Boolean reasoning, *Granular Computing: An Emerging Paradigm*, edited by: Pedrycz, W., Physica-Verlag, Heidelberg, 95–124, 2001.

30 Skowron, A. and Rauszer, C.: The discernibility matrices and functions in information systems. Intelligent decision support: handbook of applications and advances of the rouogh sets theory, edited by: Słowiński, R., Technical University of Poznan, 331–362, 1991.

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

**Extraction of
spatial-temporal
rules from mesoscale
eddies**

Y. Du et al.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

Table 1. Comparison of current speed derived from NLOM with cruise measurement.

Date	Long. (° E)	Lat. (° N)	U_{ADCP} (m s ⁻¹)	U_{NLOM} (m s ⁻¹)	δU (%)
2008/08/16	115.5819	21.9792	0.1972	—	—
2008/08/17	118.4670	22.0331	0.5448	0.3080	56.53
2008/08/18	119.8457	21.3517	0.4631	0.3385	73.09
2008/08/19	119.8736	19.0399	0.2419	0.2787	84.79
2008/08/20	116.3940	18.1005	0.3667	0.3430	93.54
2008/08/21	111.3139	17.3159	0.2210	0.2588	82.90
2008/08/22	110.2487	17.3391	0.1031	0.0870	84.38
2008/08/25	110.4957	18.0106	0.1632	—	—
2008/08/26	112.8241	18.0117	0.3036	0.4579	49.18
2008/08/27	116.5421	18.0086	0.3420	0.3385	98.98
2008/08/28	114.2493	18.0073	0.3153	0.4996	41.55
2008/08/29	111.5718	18.4941	0.2528	0.0750	29.67
2008/08/30	111.3114	18.9107	0.1194	—	—
2008/08/31	111.4607	19.2758	0.2247	—	—
2008/09/01	113.2634	19.5524	0.3714	0.2787	75.04
2008/09/02	115.8565	19.2557	0.2843	0.4996	24.27
2008/09/03	115.7976	20.0368	0.3054	0.1828	59.86
2008/09/04	117.0650	20.1009	0.2638	0.2172	82.34
2008/09/05	115.6592	20.4859	0.2232	0.1362	61.02
2008/09/06	113.8046	21.2015	0.1279	—	—

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

Table 2. Decision table constructed from the spatial-temporal relationships of mesoscale eddies in 4 zones of the SCS.

Condition attribute										Decision attribute	
Time	Type	Intensity (m)	Vorticity ($\times 10^{-6} \text{ s}^{-1}$)	Horizontal scale (km)	CentralTemp (°)	TempDiff (°)	Distance relationship (km)	Directional relationship	Topological relationship	Mean depth (m)	Origin place
Winter	Warm eddy	0.09	0.7	151	23.31	0.03	77	East	Disjoint	2028	Z_2
Summer	Cold eddy	0.18	1.0	201	29.94	0.08	20	Southeast	overlapping	802	Z_4

Title Page	Abstract	Introduction
Conclusions	References	
Tables	Figures	
◀	▶	
◀	▶	
Back	Close	
Full Screen / Esc		

Printer-friendly Version
Interactive Discussion

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

Table 3. Decision table constructed from the spatial-temporal relationships of mesoscale eddies generated in 4 seasons.

Origin place	Type	Condition attribute								Decision attribute
		Intensity (m)	Vorticity ($\times 10^{-5} \text{ s}^{-1}$)	Horizontal Scale (km)	CentralTemp (°)	TimeDiff (°)	Distance relationship (km)	Directional relationship	Topological relationship	
Z_1	Warm eddy	0.23	0.12	172	29.13	0.08	11	north	Overlapping	1757 autumn
Z_3	Warm eddy	0.12	0.07	196	28.65	1.42	26	northeast	overlapping	1712 winter

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	

Printer-friendly Version
Interactive Discussion

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

Table 4. Decision table constructed from the spatial-temporal relationships of the type of mesoscale eddies.

place Origin	Time	Condition attribute							Decision attribute		
		Intensity (m)	Vorticity ($\times 10^{-5} \text{ s}^{-1}$)	Horizontal Scale (km)	CentralTemp ($^{\circ}$)	TimeDiff ($^{\circ}$)	Distance relationship (km)	Directional relationship	Topological relationship	Mean depth (m)	Type
Z ₂	Autumn	0.15	0.06	202	26.41	0.53	199	East	Disjoint	1645	Warm eddy
Z ₁	autumn	0.27	0.11	194	28.58	0.23	43	East	overlapping	1903	Cold eddy

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

No.	Spatial-temporal rule	Certainty level%	Coverage level %
1	Type(Cold Eddy) AND Vorticity ($[0.7 \times 10^{-6}, *)$) AND HorizontalScale ($[*, 173]$) AND CentralTemp ($[*, 26.92]$) => Zone (Z_1)	100	15.5
2	Time(Winter) AND Type(Cold Eddy) AND Vorticity ($[0.7 \times 10^{-6}, *)$) AND CentralTemp ($[*, 26.92]$) => Zone(Z_1)	100	14.3
3	Type(Warm Eddy) AND Intensity ($[*, 0.08]$) AND Vorticity ($[*, 0.7 \times 10^{-6}]$) AND CentralTemp ($[26.92, 28.53]$) => Zone(Z_3)	100	13.3
4	Time(Winter) AND Vorticity ($[*, 0.7 \times 10^{-6}]$) AND CentralTemp ($[26.92, 28.53]$) => Zone(Z_3)	100	13.3
5	Time(Summer) AND HorizontalScale ($[195, *)$) AND Depth ($[900, 2400]$) => Zone(Z_4)	100	11.9

Note: “[]” represents the closed interval, “()” the open interval, “*” the infinite interval, as follows.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	

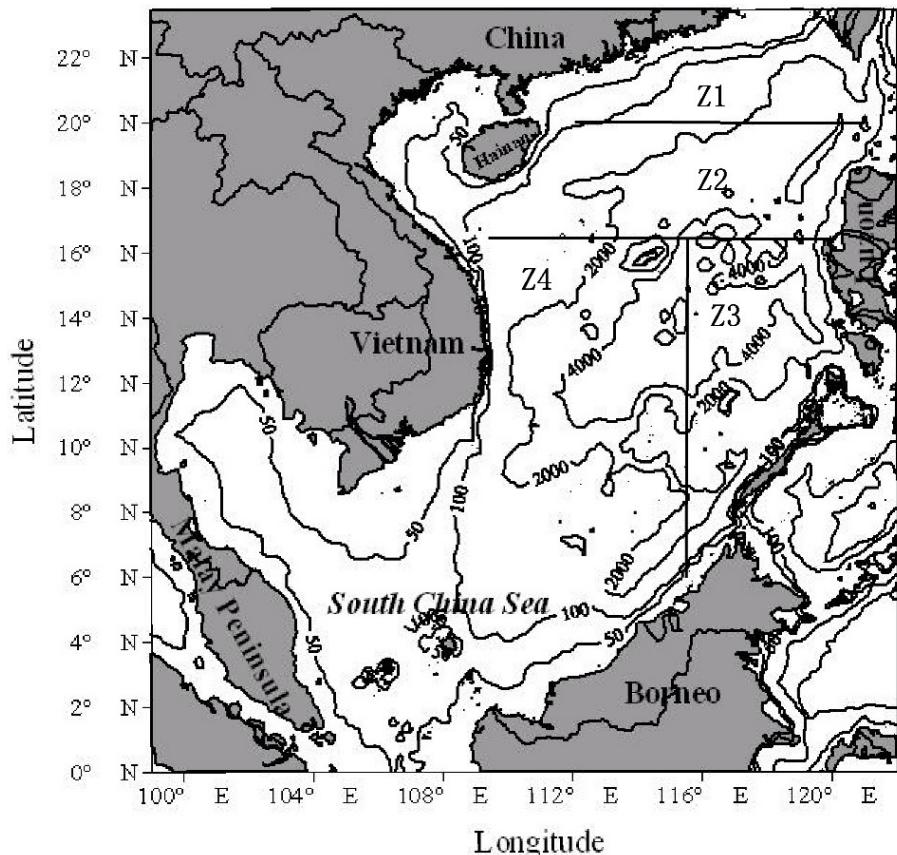
[Printer-friendly Version](#)

[Interactive Discussion](#)

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

No.	Spatial-temporal rule	Confidence level (%)	Coverage Level (%)
1	Zone (Z_2) AND Type (Warm Eddy) AND Vorticity ($[0.6 \times 10^{-6}, *]$) AND CentralTemp ($[*, 26.22]$) => Time (Winter)	100	32.5
2	Zone (Z_2) AND Type (Warm Eddy) AND CentralTemp ($[*, 26.22]$) AND TempDiff ($[*, 0.18]$) => Time (Winter)	100	20.8
3	Zone (Z_2) AND CentralTemp ($[*, 26.22]$) AND Depth ($[500, 2800]$) => Time (Winter)	100	20.8
4	CentralTemp ($[*, 26.22]$) AND TempDiff ($[*, 0.18]$) AND Depth ($[500, 3000]$) => Time (Winter)	100	20.0
5	Zone (Z_2) AND Type (Warm Eddy) AND HorizontalScale ($[147, 190]$) AND CentralTemp ($[*, 26.22]$) => Time (Winter)	100	18.3
6	Zone (Z_2) AND Vorticity ($[0.06 \times 10^{-6}, *]$) AND CentralTemp ($[*, 26.22]$) AND Topology (overlapping) => Time (Winter)	100	17.5
7	Zone (Z_2) AND Type (Warm Eddy) AND CentralTemp ($[*, 26.22]$) AND Direction (Northeast) => Time (Winter)	100	14.2
8	Vorticity ($[0.06 \times 10^{-6}, *]$) AND CentralTemp ($[*, 26.22]$) AND Topology (overlapping) AND Depth ($[500, 4200]$) => Time (Winter)	100	13.3
9	Zone (Z_2) AND Type (Warm Eddy) AND Intensity ($[0.16, *]$) AND CentralTemp ($[26.22, 28.72]$) => Time (Autumn)	100	11.7
10	Zone (Z_4) AND CentralTemp ($[29.59, *]$) AND Distance ($[19, 42]$) => Time (Summer)	100	11.6
11	Type (Warm Eddy) AND CentralTemp ($[29.59, *]$) AND TempDiff ($[*, 0.18]$) AND Depth ($[2800, 4200]$) => Time (Summer)	100	11.6


Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

No.	Spatial-temporal rule	Confidence level (%)	Coverage Level (%)
1	Vorticity ($[*, 0.7 \times 10^{-6}]$) AND CentralTemp ($[29.02, *]$) AND Distance ($[*, 48]$) => Type (Warm Eddy)	100	22.3
2	Vorticity ($[*, 0.7 \times 10^{-6}]$) AND CentralTemp ($[29.02, *]$) AND Temp ($[*, 0.16]$) => Type (Warm Eddy)	100	20.1
3	Intensity ($[0.17, *]$) AND Vorticity ($[0.9 \times 10^{-6}, *]$) AND Depth ($[1400, 2400]$) => Type (Cold Eddy)	100	17.3
4	Time (Winter) AND Depth ($[500, 4400]$) => Type (Warm Eddy)	100	16.3
5	Zone (Z_3) => Type (Warm Eddy)	100	15.9
6	Zone (Z_4) AND Intensity ($[0.17, *]$) AND Vorticity ($[0.9 \times 10^{-6}, *]$) => Type (Cold Eddy)	100	15.3
7	Zone (Z_1) AND Vorticity ($[0.9 \times 10^{-6}, *]$) AND Depth ($[1000, 4200]$) => Type (Cold Eddy)	100	14.3
8	Time (Autumn) AND Vorticity ($[0.9 \times 10^{-6}, *]$) AND Depth ($[500, 4200]$) => Type (Cold Eddy)	100	14.3
9	Intensity ($[*, 0.10]$) AND CentralTemp ($[29.02, *]$) AND Distance ($[*, 48]$) => Type (Warm Eddy)	100	13.8
10	Vorticity ($[0.9 \times 10^{-6}, *]$) AND CentralTemp ($[27.72, 29.02]$) AND Depth ($[1000, 4000]$) => Type (Cold Eddy)	100	13.3
11	Zone (Z_2) AND Time(Winter) AND Distance ($[*, 48]$) => Type (Warm Eddy)	100	12.4
12	CentralTemp ($[*, 27.72]$) AND Depth ($[1200, 3600]$) => Type (Cold Eddy)	100	12.2
13	Time (Spring) AND Vorticity ($[0.9 \times 10^{-6}, *]$) AND Topology (Disjoint) => Type (Cold Eddy)	100	11.2

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

Fig. 1. Topography of the SCS (Z_1 : northeastern SCS; Z_2 : central SCS; Z_3 : southeastern SCS; Z_4 : southwestern SCS; Solid lines are the boundaries of Z_1 , Z_2 , Z_3 and Z_4).

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

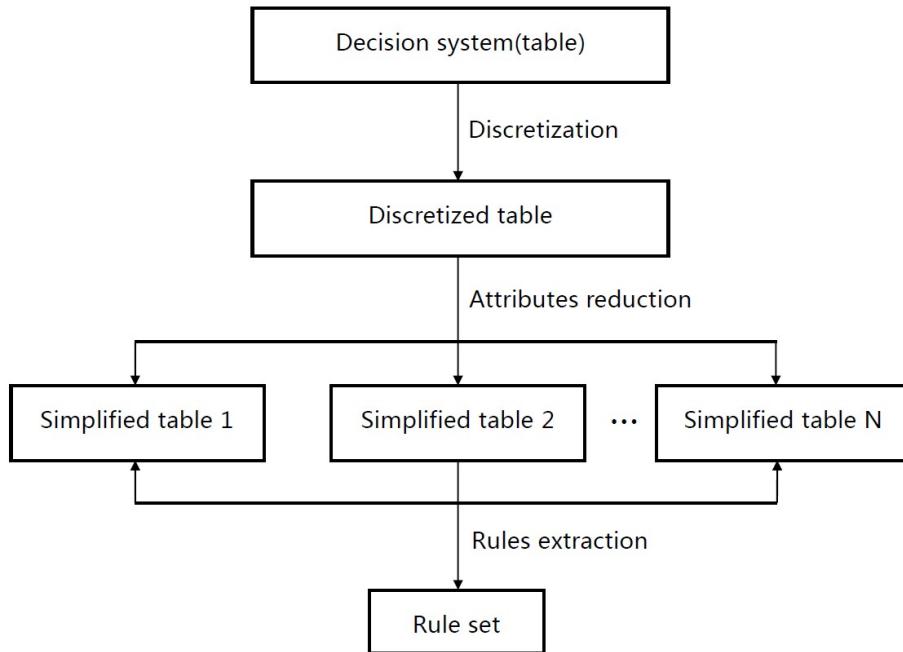
[Figures](#)

◀

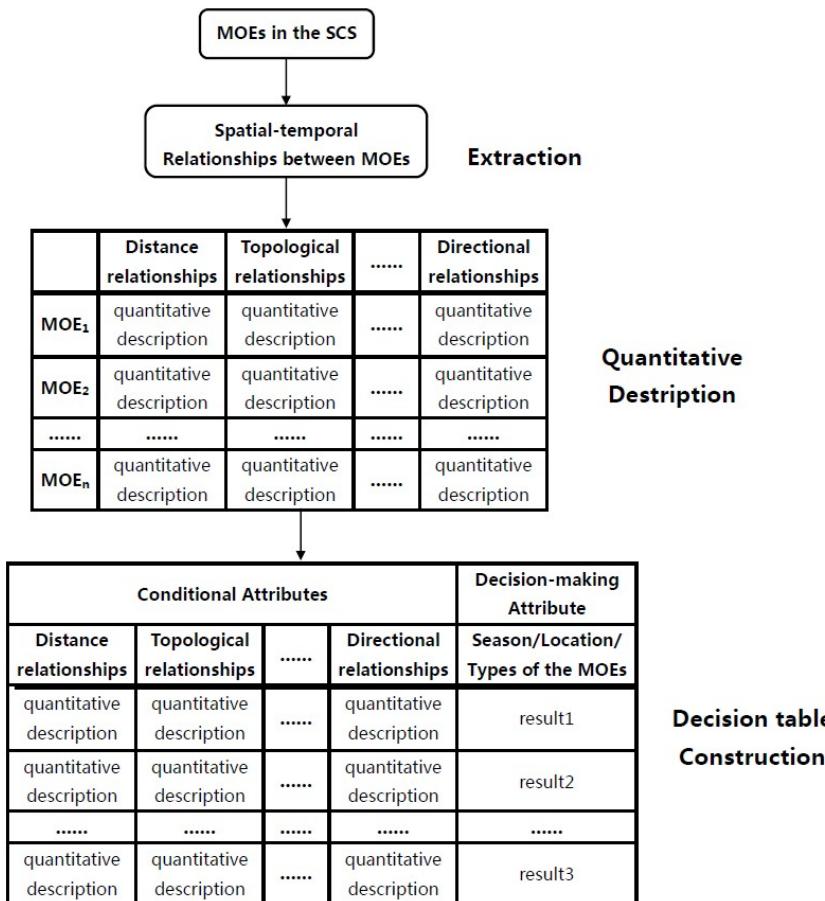
▶

◀

▶


[Back](#)

[Close](#)


[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Fig. 2. Flowchart of the procedures to represent spatial-temporal relationships among mesoscale-eddy states.

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

Title Page

Abstract

Introduction

Conclusions

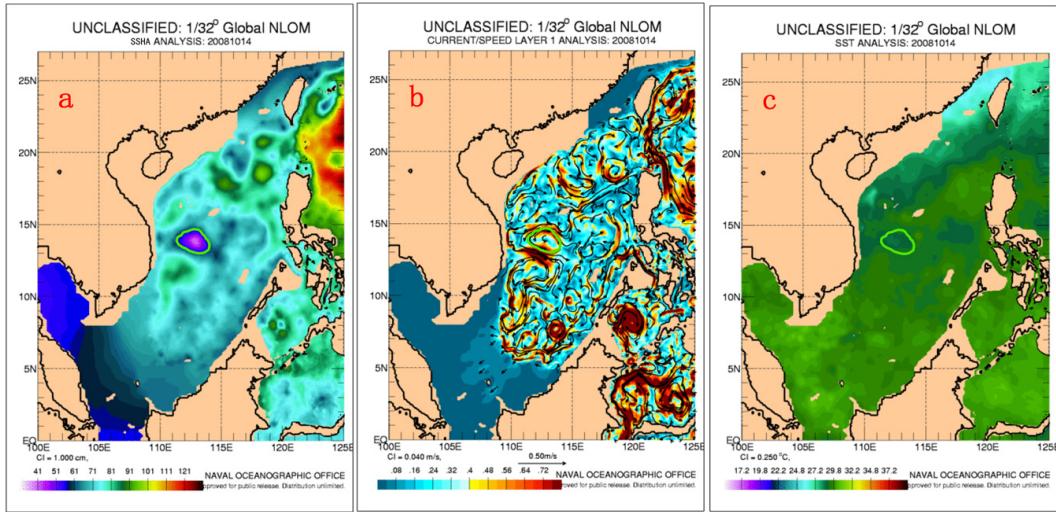
References

Tables

Figures

1

1


Page 10

Full Screen / Esc

11 of 11 | Page

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

Fig. 4. Sketch map of a mesoscale eddy in the SCS (the corresponding raw datasets used to derive eddies are also shown in this figure).

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

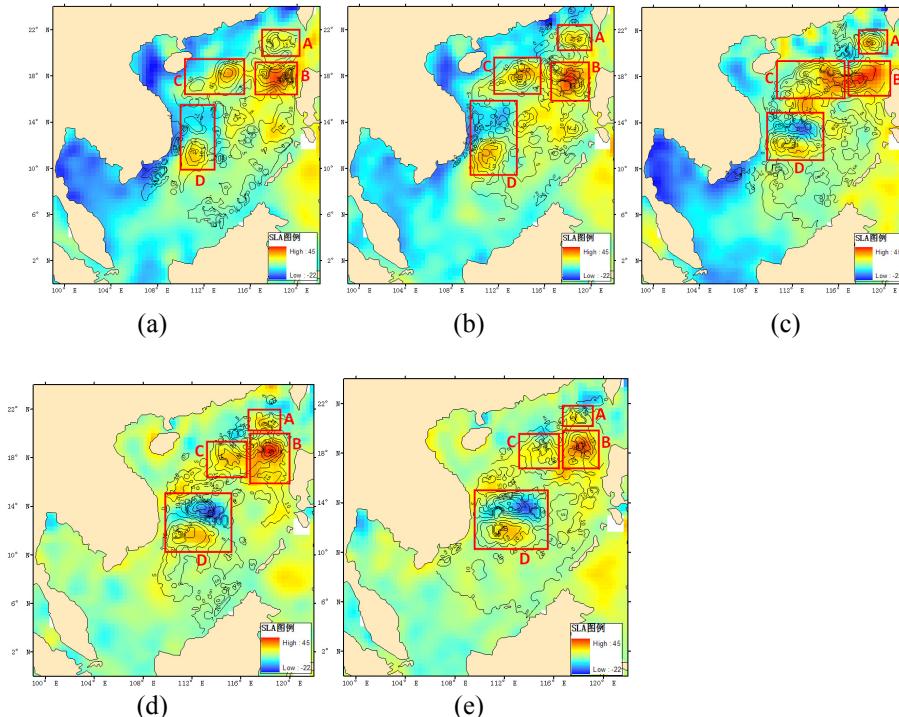
▶

◀

▶

[Back](#)

[Close](#)


[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

Fig. 5. Spatial distribution of typical mesoscale-eddy states in the SCS extracted from Table 2 (red triangle, black square, green star, purple dot and yellow pentagon represent the states of eddy following rules 1–5 in Table 2, respectively. Blue line is 2000 m isobaths).

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

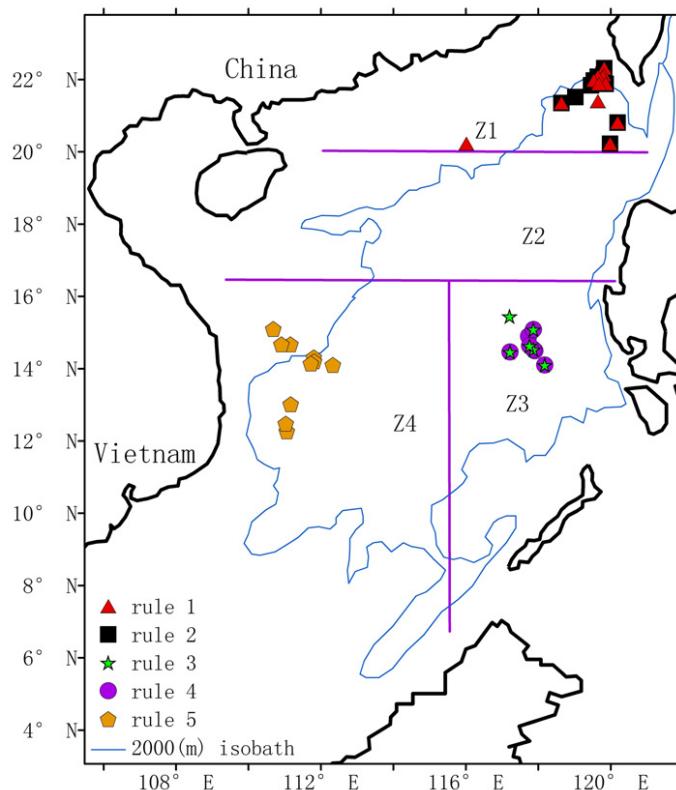
[Figures](#)

◀

▶

◀

▶


[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

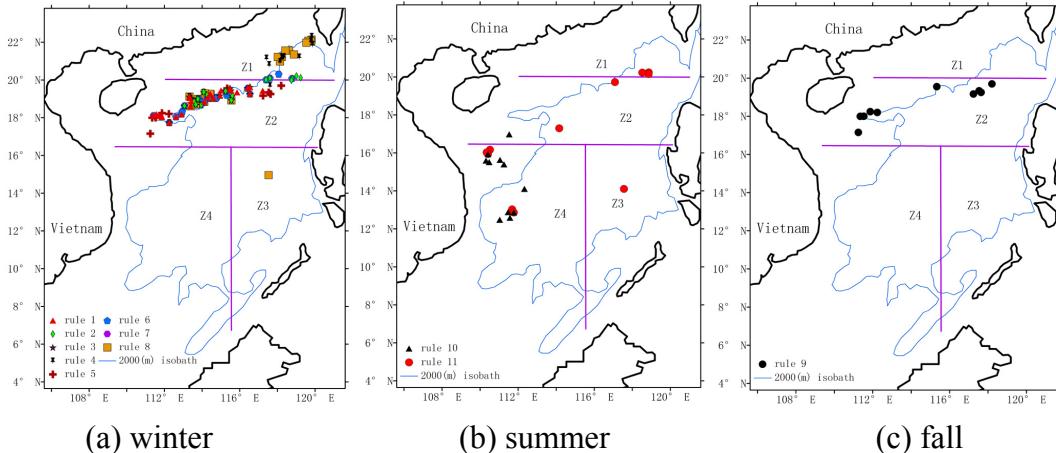
[Interactive Discussion](#)

Fig. 6. Spatial distribution of typical mesoscale-eddy states in the SCS extracted from Table 5 (red triangle, green star, purple dot, yellow diamond and black square represent the states of eddy following rule 1, 3, 5, 10 and 11 in Table 3, respectively. Blue line is 2000 m isobaths).

Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper

Discussion Paper

Discussion Paper


Discussion Paper

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	

Printer-friendly Version

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

Fig. 7. Spatial distribution of typical states of the two types of mesoscale eddies in the SCS extracted from Table 6 with all states of cold eddies and warm eddies (red triangle and green dot represent the typical states of eddy following rule 1 and rule 3 in Table 4, respectively. Black pentagon and yellow square represent all typical states of cold eddies and warm eddies, respectively. Blue line is 2000 m isobaths).

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

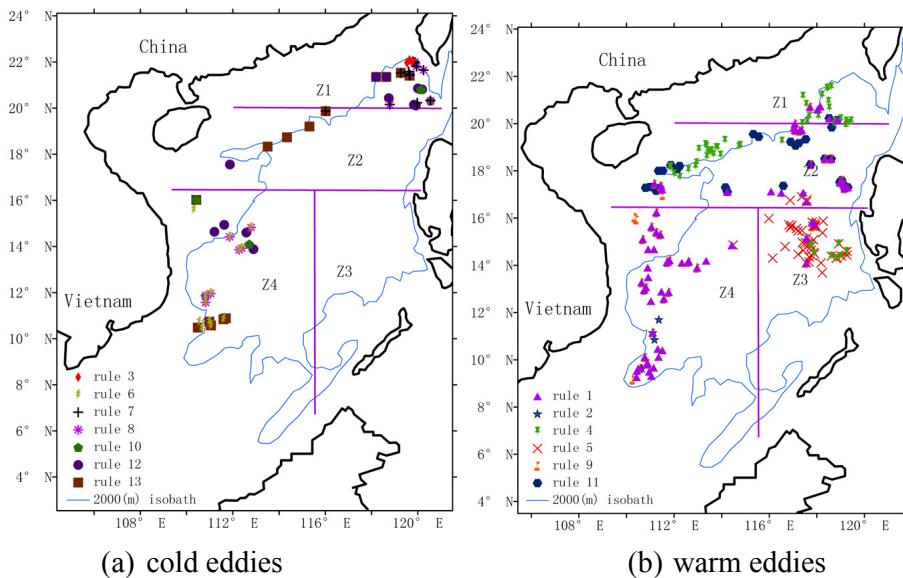
▶

◀

▶

[Back](#)

[Close](#)


[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Extraction of spatial-temporal rules from mesoscale eddies

Y. Du et al.

Fig. 8. Spatial distribution of all typical cold-eddy states **(a)** and warm eddies **(b)** in the SCS extracted from Table 7 (blue line is 2000 m isobaths).

Title Page

Abstract

Introduction

Conclusion

References

Tables

Figures

1

A small blue triangle icon, likely a navigation button or a play button, located in the bottom right corner of the slide.

1

Back

Close

Full Screen / Esc

Interactive Discussion